Research

 

Biofluiddynamics    Drops    Bubbles    Elastocapillarity     Nanofabrication

 

 

 

Drops

 

Liquid slug manipulation in microscales
 

We study the propulsion and control of liquid menisci confined within micro/nanochannels using thermocapillarity, capillary burst valves and electrowetting.


Related publications

1. H.-Y. Kim,
On thermocapillary propulsion of microliquid slug, Nanoscale and Microscale Thermophysical Engineering, 11, 351-362 (2007)
2. H. Cho, H.-Y. Kim, J. Y. Kang, and T. S. Kim,
How the capillary burst microvalve works, Journal of Colloid and Interface Science, 306, 379-385 (2007)

3. D.-G. Lee, J. Park, J. Bae, and H.-Y. Kim, Dynamics of a microliquid prism actuated by electrowetting, Lab on a Chip, 13, 274-279 (2013)

4. A. Lee, and H.-Y. Kim, Does liquid slippage within a rough channel always increase the flow rate?, Physics of Fluids 26, 07002 (2014)

5. M. Kang, W. Park, S. Na, S. Paik, H. Lee, J. Park, H.-Y. Kim, and N. L. Jeon, Capillarity guided patterning of microliquids, Small  11, 2789-2797 (2015)

6. J. Ha, J. Park, Y. Kim, B. Shin, J. Bae and H.-Y. Kim, Interfacial waves generated by electrowetting-driven contact line motion, Physics of Fluids 28, 102102 (2016)

 

Drop impact behavior

 

Drop impact is a fascinating phenomenon showing the beauty of interfacial flows, which emerges in diverse natural and industrial situations. We perform fundamental research associated with drop impact onto solid surface, such as the origin of splashing and physical mechanism of recoiling.

 

Related publications
1.
H.-Y. Kim, Z. C. Feng, and J.-H. Chun, Instability of a liquid jet emerging from a droplet upon collision with a solid surface, Physics of Fluids, 12, 531-541 (2000)
2. H.-Y. Kim and J.-H. Chun, The recoiling of liquid droplets upon collision with solid surfaces, Physics of Fluids, 13, 643-659 (2001)
3. Y.-S. Yang, H.-Y. Kim, and J.-H. Chun, Spreading and solidification of a molten microdrop in the solder jet bumping process, IEEE Transactions on Components and Packaging Technologies, 26,  215-221 (2003)
4.
H.-Y. Kim, S.-Y. Park, and K. Min, Imaging the high-speed impact of microdrop on solid surface, Review of Scientific Instruments, 74, 4930-4937 (2003)
5. H.-Y. Kim, T. Karahalios, T. Qiu, and J.-H. Chun,
Microsensor for impact of molten metal microdrops, Sensors and Actuators A: Physical, 116, pp. 417-423 (2004)
6. H. J. Lee and H.-Y. Kim,
Control of drop rebound with solid target motion, Physics of Fluids, 16, 3715-3719 (2004)

7. M. Lee, Y. S. Chang, and H.-Y. Kim, Drop impact on microwetting patterned surfaces, Physics of Fluids, 22, 072101 (2010)

8. S. Kim, M.-W. Moon, and H.-Y. Kim, Drop impact on super-wettability-contrast annular patterns, Journal of Fluid Mechanics, 730, 328-342 (2013)

9. H. Kim, J. Lee, T.-H. Kim, and H.-Y. Kim, Spontaneous Marangoni mixing of miscible liquids at a liquid-liquid-air contact line, Langmuir 31, 8726−8731 (2015)

 

Cover of the July issue of Physics of Fluids (2010): Ref. 7

 

Drops and rivulets on solid surfaces
 

We study the dynamics of drops and rivulets on solid surfaces that involve the motion of the contact line.
 

Related publications
1.
H.-Y. Kim, H. J. Lee, and B. H. Kang, Sliding of liquid drops down an inclined solid surface, Journal of Colloid and Interface Science, 247, 72-380 (2002)
2. H.-Y. Kim, J.-H. Kim, and B. H. Kang, Meandering instability of a rivulet, Journal of Fluid Mechanics, 493, 245-256 (2004)
3. H.-Y. Kim,
Drop fall-off from the vibrating ceiling, Physics of Fluids, 16, 474-477 (2004)
4.
J. H. Moon, B. H. Kang, and H.-Y. Kim, The lowest oscillation mode of a pendant drop, Physics of Fluids, 18, 021702 (2006)

5. S. J. Kim, M.-W. Moon, K.-R. Lee, D.-Y. Lee, Y. S. Chang, and H.-Y. Kim, Liquid spreading on superhydrophilic micropillar arrays, Journal of Fluid Mechanics, 680, 477-487 (2011)

6. J. Kim, M.-W. Moon, K.-R. Lee, L. Mahadevan, and H.-Y. Kim, Hydrodynamics of writing with ink, Physical Review Letters, 107, 264501 (2011)

7. A. Lee, M.-W. Moon, H. Lim, W.-D. Kim, and H.-Y. Kim, Water harvest via dewing, Langmuir, 28, 10183-10191 (2012)

8. J. Park, J. Park, H. Lim, and H.-Y. Kim, Shape of a large drop on a rough hydrophobic surface, Physics of Fluids, 25, 022102 (2013)

9. S. J. Kim, J. Kim, M.-W. Moon, K.-R. Lee, and H.-Y. Kim, Experimental study of drop spreading on textured superhydrophilic surfaces, Physics of Fluids, 25, 092110 (2013)

10. B. Shin, M.-W. Moon, and H.-Y. Kim, Rings, igloos and pebbles of salt formed by drying saline drops, Langmuir 30, 12837−12842 (2014)

11. S. J. Kim, J. W. Choi, M.-W. Moon, K.-R. Lee, Y. S. Chang, D.-Y. Lee, and H.-Y. Kim, Wicking and flooding of liquids on vertical porous sheets, Physics of Fluids 27, 032105 (2015)

12.  D. H. Kim, M. C. Jung, S.-H. Cho, S. H. Kim, H.-Y. Kim, H. J. Lee, K. H. Oh, and M.-W. Moon, UV-responsive nano-sponge for oil absorption and desorption, Scientific Reports 5, 12908 (2015)

13. J. Kim, M.-W. Moon, and H.-Y. Kim, “Dynamics of hemiwicking,” Journal of Fluid Mechanics 800, 57-71 (2016)

14. J. Kim, J. Ha, and H.-Y. Kim, “Capillary rise of non-aqueous liquids in cellulose sponges,” Journal of Fluid Mechanics 818, R2 (2017)


 

 

 

 

 

Home         People         Research         Publications         Press         Education         Miscellanea         Contact us

 

 

 

Micro Fluid Mechanics Laboratory

Department of Mechanical and Aerospace Engineering

Seoul National University, Korea